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Summary

Project and Client

 We analysed data from seven repeat-measured standard forest biodiversity monitoring
plots to (i) identify areas of high uncertainty to focus on during staff training; (ii) assist
the development of objective field audit standards, and (iii) quantify the effect of
measurement error on uncertainty associated with biodiversity indicators and
biodiversity reporting more widely. This work contributes to the Department of
Conservation’s Biodiversity Monitoring and Reporting programme.

Objectives

 Quantify measurement error uncertainty associated with key biodiversity indicators,
such as species richness, species turnover, and cover scores.

 Use these data to assess the suitability of the current biodiversity field audit standards
(data quality limits; DQLs) employed by Department of Conservation (DOC).

 Develop a framework to incorporate measurement error into relevant Indicators and
Measures for national-scale reporting on biodiversity, focusing on the following two
Measures: (i) M 5.1.1. (size-class structure of canopy dominants) by calculating the
basal area, size class structure and occupancy of 10 common tree species; and (ii) M
5.2.1. (representation of plant functional types) by calculating the richness of palatable
and unpalatable plant species on plots and their occupancy nationally.

Methods

 Measurement errors were estimated by comparing data recorded by different teams on
the same plot.

 Errors were modelled either using a single distribution applied generally (e.g. DBH) or
using predictive models (e.g. species richness of palatability groups).

 We simulated new data for 500 randomly selected remeasured LUCAS plots, based on
modelled errors, to obtain estimates of confidence intervals for the indicators we
examined that account for measurement error.

Results

 Eight of the most widespread tree species showed a significant change in size
distribution in the observed data. However, when measurement error was included only
four species differed significantly between measurements.

 There was a significant increase in the proportional richness of “Avoided” species even
when measurement error was included in estimating confidence intervals.

 Many of the plot measures varied more between teams than the amount of variation
allowed for in DOC’s DQLs.
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 Measurement considerably increased uncertainty for some key indicators, which means
the power of the LUCAS plot network to detect changes is not as great as previously
assumed.

 Non-detection probabilities for individual species can be estimated using a few simple
predictors. This may help identify species and functional groups where greater
standardisation in search effort within plots and species identification is required.

Conclusions

 Our results demonstrate the importance of quantifying and integrating measurement
error into biodiversity measures. Our data clearly indicate that measurement error is an
unavoidable component of biodiversity data.

 Measures of community-level species composition are particularly vulnerable to
measurement error, and thus may have limited power to detect change through time.
However, we demonstrate that key monitoring and reporting measures are robust to this
measurement error when applied to a large plot network with high statistical power.

 Inclusion of uncertainty can alter the statistical significance of changes in measures,
underscoring the need to account for uncertainty in biodiversity reporting in order to
minimise the risk of Type I errors (i.e. reporting a ‘false’ change in a measure).

Recommendations

 We recommend incorporating measurement uncertainty into monitoring and reporting
of biodiversity measures across Public Conservation Lands. To achieve this, estimates
of measurement uncertainty are required from a larger sample of forest ecosystems and
from non-forest ecosystems.

 We recommend extending this work to assess the uncertainty in all measures used to
report on Ecological Integrity.

 We recommend that indices of species turnover and measures based on raw species
richness be avoided in Monitoring and Reporting programmes due to the effect of
(unavoidable) measurement error.

 We recommend using the RECCE data to determine the consequences of measurement
error on classification robustness using the Wiser et al. (2011) classification.

 We recommend applying the uncertainty framework to existing data from experimental
settings (e.g. exclosure studies) to test whether reported effects are statistically robust
once measurement uncertainty is accounted for.

 We recommend quantifying detection probabilities for a representative suite of the
indicator species proposed by Monks et al. (2013) across a range of growth forms,
assumed abundance and habitats, and developing a framework for reporting on those
species with uncertainty (specifically false absences).

 Measurement error is an unavoidable component of biodiversity data. We recommend a
two-stage solution that first minimises error through comprehensive training
programmes, and second, accommodates remaining error through quantification and
integration of measurement error into reported measures.
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1 Introduction

National scale biodiversity reporting relies on the use of highly derived metrics to synthesise
across large datasets and spatial scales (Pereira et al. 2013). For example, the valuation of
ecosystem services requires integration of data on ecosystem function (mechanisms, fluxes,
pools), land use (maps, classifications, area estimates), and economic or social estimates of
the value provided by that service (Costanza et al. 1997; Cardinale et al. 2012). In
New Zealand, the Department of Conservation (DOC) is currently developing a derived
metric of ‘Ecological Integrity’ that aggregates multiple data sources on animal and plant
occupancy and abundance (Lee et al. 2005; Bellingham et al. 2013).

Each component data source will have uncertainty. Uncertainty arises from several sources:
the inability to perfectly measure key variables (i.e. differences among observers), the
necessary use of models to make predictions (e.g. the use of allometric relationships to model
tree biomass from tree diameter), and the natural variability of ecosystem processes across
the landscape (sampling uncertainty; Bolker 2008). Although sampling uncertainty is usually
reported (i.e. among-plot variability in the derived metric), other sources, such as
measurement error and model uncertainty, are generally not incorporated into the reported
metrics (Clark and Kellner 2012; Muller-Landau et al. 2013).

Misrepresentation of uncertainty in derived metrics can lead to false assessment of
significance and biased results. For example, Phillips et al. (1998) analysed long-term plot
data and reported that tropical forests were a net carbon sink; however, re-analysis by Clark
(2002) showed that this result was biased by ‘artefacts’ associated with measurement of
buttressed trees. It is therefore important for researchers to have quantitative estimates of the
uncertainty associated with derived metrics (Chave et al. 2004; Yanai et al. 2010; Butt et al.
2013; Holdaway et al. 2014). It is essential to show the correct level of uncertainty in derived
metrics so that management implications and policy decisions can be assessed with the
appropriate level of confidence. Understanding the major determinants of uncertainty can
also be a powerful tool for improving methodology and the accuracy of the resulting
estimates (for example, Baker et al. 2004).

To quantify measurement error associated with standard field methodologies used by the
Land Use and Carbon Analysis System (LUCAS) and DOC for national biodiversity
monitoring and reporting (DOC 2014), Landcare Research, with support from DOC, made
three fully independent measurements of seven 20 × 20 m standard biodiversity monitoring
natural forest plots in 2011. These data have been analysed in relation to uncertainty in
carbon estimates, in particular uncertainty in plot area, tagged stems, tree height, tree species
identification, diameter at breast height (DBH), and coarse woody debris (CWD) (Holdaway
et al. 2014). Here, we analyse the biodiversity components of the data (e.g. species cover
scores in height tiers collected using the RECCE method) and use these alongside the
analyses of stem diameter components of the data (from Holdaway et al. 2014) to (i) identify
areas of high uncertainty to focus on during staff training; (ii) assist the development of
objective field audit standards, and (iii) quantify the effect of measurement error on
uncertainty associated with biodiversity indicators and biodiversity reporting more widely.
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2 Objectives

The objectives of this investigation are to use data from seven standard biodiversity
monitoring plots with three repeat-measurements (hereafter referred to as the ‘uncertainty
plots’) to:

1. quantify measurement error uncertainty associated with key biodiversity indicators,
such as species richness, species turnover, and cover scores;

2. use these data to assess the suitability of the current biodiversity field audit standards
(DQL’s) employed by DOC;

3. develop a framework to incorporate measurement error into relevant Indicators and
Measures for national-scale reporting on biodiversity, focusing on the following two
Measures: (i) M 5.1.1. (size-class structure of canopy dominants) by calculating the
basal area, size class structure and occupancy of 10 common tree species; and (ii) M
5.2.1. (representation of plant functional types) by calculating the richness of
palatable and unpalatable plant species on plots and their occupancy nationally.

3 Methods

3.1 Quantification of measurement error

3.1.1 Data sources

We used data collected by Holdaway et al. (2014) to quantify observed measurement error
distributions. In March 2012, seven existing 20 × 20 m LUCAS natural forest plots were
measured three times using independent field teams following the standard LUCAS field
protocols (Payton et al. 2004; MfE 2011). These seven ‘uncertainty plots’ were located in the
central North Island of New Zealand, and were selected to encompass a broad range of
temperate broadleaved forest types and stem densities (Holdaway et al. 2014). While these
plots are a geographically restricted sample of New Zealand’s forests, they contain examples
of most of the dominant forest types (e.g. beech forest, podocarp forest, broadleaved forest,
and regenerating forest). In the absence of further data from elsewhere in New Zealand, these
uncertainty plots provide the best available data source to explore the implications of
biodiversity uncertainty at a national scale. Each field team comprised four people and
included at least one skilled botanist familiar with the local species, and two people with
reasonable (>5 years) field experience. Plots typically took one day to complete, and, to
represent standard field conditions and time expectations, each team had a 10-day period in
which to measure all seven plots. Variation among teams therefore reflected typical
measurement error expected from experienced field teams under standard field conditions
(with, for example, weather and time constraints). All field teams had the same information
prior to arriving at the plot (i.e. plot-sheets and species lists from previous measurements) and
used the same field manual. All field staff undertook additional training prior to fieldwork, to
standardise interpretation of the field manual. Care was taken to minimise disturbance on the
plot and no communication among teams occurred during the measurement period. Individual
stems for which species identification was uncertain in the field were collected and identified
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by independent expert botanists for each team. Data were entered into the national vegetation
survey (NVS) databank and all species were classified according to their palatability to
ungulates. Species were assigned to one of four groups based on their palatability to
ungulates (‘avoided’, ‘not selected’, ‘preferred’ and ‘unclassified’ following Forsyth et al.
2002).

3.1.2 Statistical determination of measurement error distributions

Error distributions for measurements of stem diameter, tree height, and tagged species
identity were sourced from Holdaway et al. (2014). Error distributions for biodiversity
variables derived from the plant species RECCE (species richness and species turnover,
species cover scores, and species identification) were quantified as follows.

Species richness and species turnover

We used the Jaccard dissimilarity index to measure species turnover between teams (i.e.
observer error for species presence-absence). We did this for individual tiers, growth forms
and palatability classes within plots. Jaccard dissimilarity incorporates both differences in
species richness and changes in species identity between samples. To separate the influence
of these factors on dissimilarity values we decomposed the Jaccard index into species
richness difference and species name difference components as follows:

RichnessNamediff
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JaccardJaccardJaccard

SSSS

SS
Jaccard

cba

a
Jaccard









2121

21

),min(
),min(

1

1

Where: a is the number of shared species, b is the number of species in sample 1 that do not
occur in sample 2, c is the number of species that occur in sample 2, but not in sample 1, S1 is
species richness of the first sample and S2 is species richness of the second sample. In
practical terms, splitting Jaccard into richness and name difference components indicates the
contribution to overall species turnover made by (i) differences in search effort or taxonomic
resolution of species identities and (ii) differences in taxonomic treatment.

Representation of palatability groups

We initially modelled changes in raw palatability group species richness between
measurements using the 500 Tier One / LUCAS forest plots described in section 3.3.1.
However, this revealed that all groups increased in species richness between measurements
(Figure 1). Raw species richness values are often difficult to use as indicators for newly-
established plot networks, as there tends to be an across-the-board increase in species
richness from the first measurement to subsequent measurements. This is believed to arise
due to a combination of extra emphasis on biodiversity during the second measurement and
the fact that teams in subsequent years search for all the species on the previous
measurement’s list and then find extra species. To overcome this artefact in the data, we
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chose to focus on the proportional richness of palatability groups, instead of raw richness
values.

We estimated differences in proportional richness on a pairwise basis, with the absolute
difference between RECCE samples for each pairwise combination of teams for each plot
being recorded. We recorded the mean observed proportional richness as the mean of the
values for both teams.

Figure 1 Mean observed richness of palatability groups in the first (2002-2007) and second (2009-2014)
LUCAS measurement period (see Methods section 3.3.1 for further details of dataset used). The results show
that each group has increased in mean richness between measurements, which is probably an artefact. Error bars
show the standard error of the mean, and the mean interval between measurements was seven years.

We modelled uncertainty in proportional richness as a function of palatability group identity
and the mean observed proportional richness using generalised linear models (GLM). We
used a quasibinomial distribution with a logit link function to ensure that predicted values
were bound between 0 and 1. GLM analyses were achieved using the glm() function in R.
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The resulting GLM was used to simulate errors in the proportional richness of each group.
This model included observed species richness, observed proportional richness and
palatability group identity as predictors.

Species cover score

We assessed uncertainty in species cover scores by comparing cover classes assigned to
species that occurred in the same plot and same tier of both measurements, based on pairwise
combinations of the three repeat-measurements of the uncertainty plots. We used this to build
a confusion matrix, which documented the probability of a species being assigned a certain
cover score in the second measurement given the cover score it was assigned in the first
measurement. For example, if a species was assigned cover class 1 in the first sample, the
confusion matrix gives the probability of it being assigned to the same or a different class in
the second measurement.

Species identification (RECCE)

We sought to generate species-specific ‘non-detection’ models for predicting the likelihood
of individual species being detected (in the same tier) in one sample of a plot, but not another.
We termed this a non-detection probability, although strictly, it could arise either from non-
detection or assigning a different name. We used generalised linear mixed effect (GLME)
models to predict non-detection probabilities. Plot and team identity were included as random
factors, while growth form, tier cover class, species richness of the genus and species
richness of the family were included as fixed effects. These last two terms were to test
whether the probability of assigning a different name was related to the number of species in
a genus or family. A binomial distribution was used with a logit link function. We used AIC
values to select the most parsimonious model from all possible combinations of predictors.
GLME modelling was performed using function glmer() in R package lme4.

3.2 Comparison to existing Data Quality Limits (DQLs)

We used the data from the seven uncertainty plots to assess whether recommended data
quality limits (DQLs) were based on reasonable expectations of experienced field staff. To do
this, we compared the predictions of our quantified measurement error distributions
(described above) with DOC’s current DQLs (Hawcroft et al. 2009). We build upon previous
work that reviewed the audit procedure previously employed by the Ministry for the
Environment (Affeld & Allen 2011) by comparing audit DQLs to actual field-quantified
measurement error distributions. We focussed on objectives that were directly relevant to the
stems (live and dead standing), the RECCE vegetation description, and the RECCE site
components of the data (equivalent to field audit objectives 1-3, 5, 11-16 and 21-27 in
Hawcroft et al. 2009), since these relate to botanical information derived from the RECCE
and stem diameter data.
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3.3 Framework to incorporate measurement error in National Biodiversity Monitoring
and Reporting Measures

To incorporate measurement error uncertainty in assessing state and change of the two
biodiversity monitoring and reporting measures we used a Monte Carlo simulation approach
with 1000 simulations based on the observed measurement error distributions. In essence, we
generated 1000 new datasets for each measurement period, where new estimates of our
indicators were generated using uncertainty models developed on the seven remeasured plots.
We describe the simulations in detail below.

3.3.1 Data sources

Estimates of measurement error uncertainty were applied to a random subset of 500
permanent forest plots on Public Conservation Lands (PCL) selected from the Tier One /
LUCAS plot network. We started with the sample of forest plots used in Bellingham et al.
(2014) to report on changes in tree size class structures on PCL. We discarded any plots that
did not have two measurements of the RECCE data as we required both stem diameter and
RECCE data for the uncertainty analyses. From the remaining plots, we randomly selected
500 (using the function sample() in R) as an objective sample of forest plots. This dataset was
then used to evaluate the effect of measurement error uncertainty on confidence limits around
the following two Tier 1 metrics.

3.3.2 M 5.1.1. Size-class structure of canopy dominants

Using the subset of 500 Tier 1 / LUCAS forest plots, we modelled changes in size structure
as changes in plot-level mean diameter for the 26 most abundant species (Allen et al. 2013;
Peltzer et al. 2014). This measure summarises the size-class structure of a species (or species
group) and can be used to make inferences about population-level recruitment and mortality
and hence, the maintenance of a species (or species group) (MacLeod et al. 2012; Bellingham
et al. 2014; Peltzer et al. 2014). These analyses simulated errors in stem diameter
measurements and species identification following the method of Holdaway et al. (2014).
Diameter errors were simulated by first randomly sampling from a log-normal distribution of
the co-efficient of variation (CV), with mean = log(0.0105) and SD = 0.8286 (Table 1). Using
the sampled CV, stem-level diameter errors were obtained through a second random
sampling from a normal distribution with mean of 0 and standard deviation equal to the
random CV × the observed diameter measurement. Thus absolute measurement error
increased with increasing stem diameter, as per the observed error distribution. Simulated
diameter measurements were then obtained by adding the randomly-generated error to the
observed measurement.

Errors in species identification were simulated assuming that, on average, 2.18% (SD =
2.08%) of tagged stems per plot are misidentified (Table 1) (Holdaway et al. 2014). The
simulated percentage of misidentified stems per plot was obtained through random sampling
from a normal distribution with the total number of misidentified stems in a plot found by
multiplying the randomly generated percentage by the number of stems observed.
Misidentified stems were assigned the identity of a species occurring on the same plot from
the same functional group, following Holdaway et al. (2014).
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We calculated the change in mean plot-level stem diameter for the 26 most abundant species
both with and without uncertainty.

3.3.3 M 5.2.1. Representation of plant functional types

Using the subset of 500 Tier 1 / LUCAS forest plots, we modelled changes in the species
richness of groups that were palatable to introduced ungulates. Browsing pressure from
introduced ungulates can reduce the occurrence of palatable species and hence this indicator
is intended to report on maintenance of palatable species, relative to other species, across
forest plots (Allen et al. 2013). New proportional richness values for each group were
simulated using the GLM for uncertainty in proportional richness described in Section 3.1.2.
To do this we first calculated the mean and standard error for predicted uncertainty for each
observation (i.e. each palatability group in each plot) in the Tier 1 / LUCAS data. We then
randomly sampled from a normal distribution defined by these parameters to obtain
uncertainty. Finally, we randomly assigned the simulated uncertainty value as a positive or
negative difference to the observed value.

3.3.4 Incorporating uncertainty in assessing state and change

We first examined the effect of uncertainty on the estimates of our test statistics, proportional
richness of palatability groups (mean and standard deviation across plots) and plot-level
species mean diameter (mean and standard deviation across plots) in each sampling period.
To do this we documented estimates of mean and standard deviation across plots for each
simulation, and calculated the mean of these values across simulations. We also calculated
the mean upper and lower 90% confidence intervals for estimates of the mean (across
simulations). This method is similar to that used by Holdaway et al. (2014) to simulate the
effect of uncertainty on forest carbon stock estimates. For changes in mean plot-level
diameter within the 26 most abundant species, we only used plots where the species was
present at both measurements.

To assess the effect of uncertainty on power to detect change between measurement periods,
we compared the mean and standard deviation of pairwise differences between plots in the
observed data with those obtained when uncertainty was incorporated. This involved
recording values for our test statistics for each plot in each simulation for both measurement
periods. For each simulation, pairwise differences between measurement periods were
calculated for each plot. This allowed the mean and standard deviation of pairwise
differences to be calculated for each simulation. We then estimated confidence intervals for
pairwise differences by taking the mean (across simulations) of the mean and standard
deviation for pairwise differences. This allowed us to directly compare the confidence
intervals obtained from the observed data (among plot variability only), with the confidence
intervals obtained when the effect of measurement error was also included.

Using our simulation results, we ran a power analysis to identify and compare the minimum
detectable effect size for the two measures, with and without the incorporation of
measurement error. This analysis used a repeated measures design (paired t-test) with a
power of 0.90, a significance level of 0.05, and standard deviations derived from either the
observed or simulated data. All statistical analyses were conducted in R version 3.1.2 (R
Development Core Team 2010).
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4 Results

4.1 Measurement error distributions

Quantified distributions for sources of uncertainty are summarised in Table 1 for stem
diameter, tree height, tree species identity, and the proportional richness of palatability
groups. For species detection and species identity from the RECCE, we present the turnover
among teams for palatability groups, growth forms and height tiers in Figure 2.

Table 1 Sources of uncertainty in carbon estimates and proportional richness of three palatability groups and
their quantified distributions (adapted from Holdaway et al. 2014)

Source of uncertainty Parameter Parameter
distribution

Mean
value

Standard
deviation

*Stem diameter (cm) CV Log-normal −4.5543 0.8286

*Tree height (m) CV Log-normal −3.1664 0.8356

*Species misidentified (N stems) % Normal 2.18% 2.08%

**Palatability group proportional richness

Avoided GLM Quasi-binomial 0.029 0.017

Not selected GLM Quasi-binomial 0.024 0.013

Preferred GLM Quasi-binomial 0.017 0.016

* Taken from Holdaway et al. 2014.
** Parameter values are given for the observed response scale rather than the logit link function scale.

Turnover (Jaccard dissimilarity) of palatability groups was <30%, for all groups except the
unclassified group (Figure 2). Turnover due to differences in richness (i.e. detection) was less
than 20% for the avoided, not selected and preferred groups, but was greater than 20% for the
unclassified group. Turnover due to name differences was >30% for the unclassified group.

Turnover (Jaccard dissimilarity) was >50% for forbs, graminoids and vines/other species
(Figure 2). Turnover due to differences in richness (i.e. detection) was >30% for forbs and
was >20% for graminoids and vines/other species. These high levels of turnover suggest
either great variation in search effort or taxonomic resolution (i.e. lumping or splitting
taxonomic concepts), or both. Ferns, graminoids, shrubs and vines all had > 20% species
turnover due to name differences. Turnover in shrubs was driven equally by differences in
richness and differences in names, while turnover in trees was driven more by differences in
names.

In Tiers 6A and 7A, the name difference component of turnover was more important than the
richness difference component, suggesting that misidentification is a larger problem than
non-detection (Figure 2). However, turnover due to differences in richness was still 25% for
Tier 7A and 20% for Tier 6A.



Quantifying uncertainty in biodiversity data for monitoring and reporting indicators

Landcare Research Page 9

Turnover due to species richness was low in Tiers 3, 4 and 5, indicating that field teams
reliably detect species in these tiers. However, turnover due to species richness was 25% in
Tier 2 which might indicate that field teams miss species in the highest tiers (canopy and
emergent canopy) or misjudge the height of species and thus assign species to the wrong tier.
Finally, since turnover due to name differences is high in Tiers 5, 6 and 7a, efforts to
standardise taxonomy would have greatest benefit if focussed on these tiers.

Figure 2 Jaccard dissimilarity (left column), and its components, Jaccard richness difference (middle column)
and Jaccard name difference (right column), for each palatability group, growth form, and tier. Each observation
represents a pairwise comparison of RECCE species lists for different teams on the same plot. Error bars show
the standard error of the mean.

Height tier, cover class and growth form were retained in the most parsimonious GLME
model predicting species non-detection. In general, species in Tier 6a and 7a, with a cover
class of < 1% and belonging to the forb, graminoid or vine/other groups were the least likely



Quantifying uncertainty in biodiversity data for monitoring and reporting indicators

Page 10 Landcare Research

to be found in both samples in paired comparisons of different teams on the same plot (Figure
3). Conversely, trees over 5m with a cover class >1 % were highly likely to be found in both
samples in pair comparisons of different teams (Figure 3). The best model predicted >50% of
the variation in mean non-detection probability across tiers within plots (Figure 4).

Figure 3 Observed ‘raw data’ (left hand column) and fitted (right hand column) non-detection probabilities for
each growth form, height tier and cover class. Note that tier and cover class have been reclassified because there
was minimal variation in non-detection probabilities for tiers above 2m and for cover classes above 5% (cover
classes are shown as 1 (<1 %), 2 (2–5%) and over 5 (>5 %). Each observation represents a pairwise comparison
of RECCE species lists for different teams in the same tier on the same plot. Error bars show 95% confidence
intervals for observed and fitted non-detection probabilities.
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Figure 4 Mean observed and fitted non-detection probabilities of RECCE species lists for different teams in the
same tier on the same plot. Each circle represents a comparison between two teams in a single tier in a single
plot. The size of circles is proportional to species richness in each pairwise comparison (taken as the mean
richness across the two teams). The red line represents a 1:1 relationship between observed and expected.

4.2 Data Quality Limits

Comparison of the observed error distributions against the current DQLs used by DOC
revealed that many of the current limits appear to be narrower than the observed
measurement error when entire plots are measured blind by independent field teams (Table
2). For example, the current DQL for stem diameter measurements for stems >10.0 cm is for
95% of the stems to be within ±1% of the diameter value (i.e. 0.2 cm for a 20.0 cm diameter
stem), whereas the quantified measurement error distribution suggests 95% of the stem
diameter measurements are within ±5%. This discrepancy may result, in part, from the fact
that our quantified measurement error distributions include all stems on the plot, whereas the
field audit procedure makes allowances in the field for trees where it is genuinely difficult to
get a standardised measure (Oliver Gansell, pers. comm.). Tree height measurements showed
a similar pattern, with an observed 95% CI of ±21.6% compared to a current DQL of ±10%
(Table 2).

The DQLs associated with the RECCE vegetation description were also generally much
stricter than the observed measurement error distributions. In particular, the vascular species
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identification DQL (DQL 14 in Table 2, 90% agreement of the plot-level vascular species
list) was much stricter than the observed variability among the three fully-blind teams in this
project (63% ± 2%). In part, this may be because field audit teams are assessing a species list,
whereas our measurements were fully-blind to the species recorded by other teams. Similarly,
the DQLs for presence in height tiers were strict relative to measured error distributions from
fully-blind teams: mean shared species within ± one tier was 89% for Tiers 2–5 and 71% for
Tier 6.
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Table 2 Comparison of DOC forest plot measurement biodiversity data quality objectives with observed measurement error distributions

DQL Component Variable Reporting unit Data quality range Predicted range from observed
measurement error distributions

Conclusion

1 RECCE site Slope Nearest 1° ±5° 90% within ±5° DQL OK

2 RECCE site Aspect Nearest 5° ±5° 24% within ±5° May be too
strict

3 RECCE site Ground cover Nearest 5% ±15% 92% within ±15% across 7 ground
cover categories

DQL OK

5 RECCE site Plot layout: horizontal
distance

Nearest 0.1 m ±0.5 m This DQL translates into maximum 5%
error on total plot area. Observed 95%
CI of total plot area was ±4.6%

DQL OK

11 RECCE vegetation
description

Vascular species
presence per height tier

Presence in tiers 1–5 95% agreement species
are in ± 1 height tier

89% agreement species are in ± 1
height tier

May be too
strict

12 RECCE vegetation
description

Vascular species
presence per height tier

Presence in tier 6 90% agreement species
are in ± 1 height tier

71% agreement species are in ± 1
height tier

May be too
strict

13 RECCE vegetation
description

Cover class per vascular
species per height tier

Cover class 1–6 95% agreement of
species in ± 1 cover class
within a tier

83–99 % agreement species in ± 1
cover class within a tier (on average
across cover classes 1-5)†. Lowest for
classes 3–5 (see Table 3).

May be too
strict for
some tiers

14 RECCE vegetation
description

Vascular species
identification

Lists as compiled in the field,
or updated post field
collection verification

90% agreement to
species

63% agreement to species (on
average)

May be too
strict

16 Stems (live) Species identification Lists as compiled in the field,
or updated post field
collection verification

95% agreement to
species

Mean difference 2.18% (97.82%
agreement)

DQL OK
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21 Stems (dead
standing & alive)

Stem DBH 2.5–10 cm Nearest 0.1 cm ±0.1 cm (currently being
tested)

95% of stems ±5% of measured DBH May be too
strict

22 Stems (dead
standing & alive)

Stem DBH 10.1–60 cm
DBH

Nearest 0.1 cm ± 1% (currently being
tested)

95% of stems ±5% of measured DBH May be too
strict

23 Stems (dead
standing & alive)

Stem DBH > 60.1 cm
DBH

Nearest 0.1 cm ±1% 95% of stems ±5% of measured DBH May be too
strict

25 Stems (dead
standing & alive)

Stem height < 20 m Nearest 0.1 m ±10% 95% of stems ±21.6% May be too
strict

26 Stems (dead
standing & alive)

Stem height 20.1–30 m Nearest 0.1 m ±10% 95% of stems ±21.6% May be too
strict

27 Stems (dead
standing & alive)

Stem height > 30.1 m Nearest 0.1 m ±10% 95% of stems ±21.6% May be too
strict

† Note that there were no cover classes of 6 recorded in the data used to assess these DQLs.
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For cover classes 1 and 2, there was a 99% chance of obtaining a cover score within ± 1
cover class of the observed, which satisfies the DQL of 95% (Table 3). However, all other
cover classes (3-5 in these data) were below 95%, suggesting the field audit standards may be
too strict.

Table 3 Confusion matrix showing the percentage chance of a species being assigned a second cover score
given a first cover score. The percentage of observations that are within one cover class either side of the other
observed cover class is also presented (% within ± 1 class)

First cover score

0.5 3 15.5 38 63

0.5 88 39 8 2 0

3 11 46 33 4 0

Second cover score 15.5 1 14 52 26 17

38 0 0 6 62 33

63 0 0 1 5 50

% within ± 1 class 99 99 91 93 83

4.3 Incorporation of uncertainty into Tier 1 measures

4.3.1 Tree size class structures by species

Including measurement error increased the uncertainty around the mean estimate of change in
mean stem diameter by 10.2% on average across all species (Table 4), but there was large
variability across species. There was no obvious pattern in the effect of measurement error on
uncertainty. For instance, there was no trend for species occurring in fewer plots to be more
strongly affected by measurement error. Importantly, the inclusion of measurement error
altered the significance of a paired t-test testing for a change in mean diameter between
measurements. Mean diameter differed significantly in eight species based on the observed
mean change and observed standard deviation. However, four of those eight species were not
significant once measurement error was included. This result is critical; analyses based on the
observed data would have drawn false conclusions on the demographic processes of four
common tree species.
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Table 4 Observed and simulated means and standard deviations of changes in plot-level mean stem diameter
for the 26 most widespread tree species. Observed values include sampling uncertainty only, whereas simulated
values include both sampling uncertainty and measurement error. Species are presented in three groups
according to whether or not there was a significant difference in mean diameter (see footnote), and then by the
number of plots in which the species was present

Species
code

N plots
present

Mean observed
change in mean
stem diameter
over 7 years
(cm)

Standard
deviation of
observed
mean
(cm)

Simulated mean
change in mean
stem diameter
over 7 years
(cm)

Standard
deviation of
simulated
mean
(cm)

Change in
uncertainty when
measurement
error included
(%)

CARSER* 132 0.50 1.82 0.48 2.00 9.9

PSECRA* 120 0.45 1.55 0.44 1.73 11.6

MELRAM* 119 0.32 1.44 0.31 1.55 7.6

KUNERI* 61 0.89 2.73 0.89 2.78 1.8

NOTSOL† 106 0.56 2.69 0.54 2.99 11.2

COPFOE† 87 0.13 0.56 0.12 0.66 17.9

RAUSIM† 63 0.38 1.47 0.38 1.59 8.2

KNIEXC† 63 0.59 2.05 0.56 3.09 50.7

WEIRAC 235 0.25 2.77 0.24 2.91 5.1

NOTMEN 178 0.36 4.14 0.34 4.45 7.5

DICSQU 137 -0.02 1.14 -0.02 1.25 9.6

CYASMI 130 -0.02 1.45 -0.02 1.51 4.1

GRILIT 129 0.2 2.13 0.20 2.41 13.1

PSECOL 116 0.02 0.64 0.03 0.77 20.3

PODCUN 114 0.12 2.63 0.11 3.05 16.0

NOTFUS 97 -0.48 11.76 -0.46 12.15 3.3

MYRDIV 89 0 0.67 0 0.70 4.5

CYADEA 87 0.16 1.63 0.17 1.76 8.0

BEITAW 84 -0.02 5.4 -0.01 5.54 2.6

HEDARB 82 0.27 1.3 0.27 1.72 32.3

PRUFER 80 0.14 4.03 0.13 4.38 8.7

DACCUP 80 -0.92 9.2 -0.92 9.56 3.9

QUISER 78 0.03 1.99 0.03 2.06 3.5

METUMB 74 -1.40 11.49 -1.41 11.94 3.9

LEUFAS 67 0.10 0.62 0.10 0.63 1.6

LEPSCO 66 -0.21 2.93 -0.21 2.92 -0.3

*Significant difference in mean diameter when measurement error is included in estimating SE.
†Significant difference in mean diameter using standard paired t-test but not when measurement error was
included.
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4.3.2 Palatability group proportional species richness

Including measurement error increased the uncertainty around the mean estimate of net
change in proportional species richness by 23% for preferred species, 37% for avoided
species, 40% for unclassified species, and 141% for the not selected group (Table 5). Model
simulations were generally not biased; however simulations overestimated mean proportional
richness for the not selected group. This is probably because values for this group were
strongly zero-inflated (most plots had no species in this group), making it difficult to model
from available distribution types. Indeed, the confidence intervals in predicted values for this
group were very large.

Based on the random subset of 500 Tier One / LUCAS plots used in this report, the
proportional richness of avoided species increased between measurement periods and this
increase was statistically significant based on the observed data (mean net difference = 1.24,
95% CI = 0.82 to 1.66) and after the effect of measurement error was included (mean net
difference = 1.24 95% CI with measurement error = 0.66–1.82) (Table 5).

Table 5 Observed means and standard deviations of observed and simulated means of proportional palatability
group richness. Observed values include sampling uncertainty only, whereas simulated values include both
sampling uncertainty and measurement error

Group Observed mean
change in
proportional richness
(%)

Standard
deviation of
observed mean
(%)

Standard
deviation of
simulated mean
(%)

Change in uncertainty
when measurement
error included
(%)

Preferred –0.22 3.67 4.52 +23

Avoided 1.24 4.81 6.57 +37

Not selected 0.06 0.78 2.65 +141

Unclassified –0.28 6.17 8.66 +40

The increase in uncertainty when measurement error is included translates into an equivalent
increase in the minimum detectable effect size at any given level of replication. This is
illustrated for the preferred group in Figure 5, which presents the results of a power analysis
based on the observed and simulated standard deviations. The decrease in power due to
measurement error with a sample size of 750 plots is roughly the same magnitude as the
increase in power obtained by increasing the replication from 750 to 1250 plots.
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Figure 5 Effect of sample size and inclusion of measurement error on the minimum detectable change in
proportional richness (%) for the preferred palatability group. Results apply at the national scale assuming a 7-
year measurement interval, and are based on power analysis (power.t.test in R) with power = 0.9, significance
level = 0.05, and standard deviations from Table 5.

5 Discussion

This report has demonstrated the importance of quantifying and integrating measurement
error into biodiversity measures. Our data clearly demonstrate that measurement error is an
unavoidable component of biodiversity data: highly-qualified field teams differed in the
identity and abundance scores given to species in the field. Measures of community-level
species composition are particularly vulnerable to measurement error, which in turn can limit
the power to detect change through time. However, we demonstrate that key monitoring and
reporting measures are robust to this measurement error when applied to a large plot network
with high statistical power. Our analyses demonstrate that inclusion of uncertainty can alter
the statistical significance of changes in measures, underscoring the need to account for
uncertainty in biodiversity reporting in order to minimise the risk of Type I errors (i.e.
reporting a false change in a measure).

5.1 Data quality limits

Our error distributions are larger than those of the DQLs in many instances. However, due to
the nature of the field audit procedure, this is not necessarily a reason to change the field
audit DQLs. Some stems are excluded from the DQL calculation in the field audit due to
exceptional circumstances (e.g. misshapen and difficult to measure). In our calculations, all
stems on a plot are included in the measurement error distributions. Our data are also for
‘blind’ variability between measurements. In contrast, the field audit teams have the most
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recent measurement data that they are auditing, and so can recheck their measurements if
they vary from the observed. Thus our error distributions are not directly transferable into
DQLs. Alignment of our error distributions with the DQLs would require the field audit
procedure to be changed to a fully-blind whole plot measurement. However, the current field
audit procedure has two advantages over a fully-blind whole plot measurement: firstly, it is
much quicker, and secondly, it provides scope for the field audit team to identify how and
why errors occurred, and this maximises the opportunity to provide specific feedback to field
teams. In light of this, the current procedure is the most useful for field teams and training
purposes, although the actual measurement errors are likely to be larger than the current
DQLs.

Detection probabilities vary according to the type of plant and the traits of that species (this
report; Garrad et al. 2013) and are inversely proportional to abundance (McCarthy et al.
2012; this report). Clustered individuals are more easily detected, even at low abundance,
than scattered individuals (McCarthy et al. 2012). Interestingly, we found no evidence that
species were harder to detect if they were from a species-rich genus or family. Detection was
lowest in forbs and grasses which reflect that many field botanists are less confident at
identifying these groups, relative to other growth forms. Detection probabilities increase with
the amount of time spent looking, particularly for scattered or rare species (Garrad et al.
2008) and thus one way of increasing detection is to allocate sufficient time to structured
searching by expert field botanists. However, an important finding from our study is that
measurement error is an unavoidable component of biodiversity data. While training and
adequate resourcing can reduce error, they cannot eliminate it. The solution is minimise
measurement error and to quantify and integrate its impact into reported measures, as has
been done here.

5.2 Consequences of measurement error for biodiversity measures

There was an almost universal increase in the standard error of mean values of biodiversity
measures when including uncertainty. Our analyses have demonstrated that inclusion of
uncertainty can alter the statistical significance of changes in measures (specifically, changes
in the mean diameter of common tree species). This strongly suggests that uncertainty should
be accounted for in all Tier 1 measures to minimise the risk of Type I errors, that is, reporting
a false change in a measure.

Our measures of uncertainty include three sources of measurement error: (1) a plant was not
detected (2) a plant was detected by all teams but each team gave that plant a different name
and (3) each team established the plot with different boundaries and hence plants were not
included equally by all teams. Training can reduce each of these three sources of error,
although it is widely recognised that detection is imperfect, even by the most experienced and
highly-trained field botanists (e.g. McCarthy et al. 2012). Additional progress beyond
comprehensive training can be made by quantifying detection probabilities and integrating
those into measures and indicators.

Recent work in Australia (Garrad et al. 2008; 2013; in press) has used data on the time taken
for trained botanists to find known individuals in 1 ha plots to quantify the probability of a
given survey effort detecting a species’ presence or true absence, and demonstrated how these
probabilities can be incorporated into environmental impact assessments. Similar procedures
could be adopted in New Zealand, particularly for rare species currently proposed as indicator
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species (e.g. Monks et al. 2013). The measures in this report either use common species (e.g.
mean diameter of common tree species) or aggregate across species groups (e.g. the
proportion of palatable species) and these are likely to be less vulnerable to detection errors
than measures based on single species with limited distributions (e.g., the distribution and
abundance of Anisotome haastii as an indicator of browse pressure in alpine terrestrial
habitats, Monks et al. 2013).

The non-detection model developed in this report successfully predicted non-detection in
>50% of instances (Figure 4). This model could be applied to all species in the flora to
predict the probability of non-detection. These probabilities could be used to guide training
and field effort towards species with a high probability of non-detection. Broadly, these are
likely to be forbs, graminoids, vines or unclassified groups that are commonly found with a
low cover. However, we emphasise that our detection probabilities are based on a sample of
seven forest plots from a geographically-restricted area (western North Island) and a more
robust sample of forests, and data from non-forest ecosystems would be highly desirable to
extend this uncertainty framework to all ecosystems, nationally. Lastly, standardising
nomenclature in forbs and graminoids could reduce uncertainty as the turnover in these
groups was high (>20%). While some of this turnover will be due to detection, a component
will be due to variation among teams in whether taxonomic concepts are ‘split’ or
‘aggregated’, and this source of error can be reduced through use of standardised floras.

Species richness increased across the sample of 500 forest plots between the first and second
measurements (Figure 1). This artefact of biodiversity sampling is well-established but
presents challenges when reporting on temporal trends in richness. The solution applied in
this report was to relativise richness (e.g. the proportion of avoided species, rather than
absolute richness of avoided species) and we recommend similar solutions for other measures
based on temporal trends in richness.

The percentage increase in uncertainty around proportional richness in palatability groups
was similar to the percentage increase in uncertainty in net carbon change estimates (+35%,
Holdaway et al. 2014). However, the significance of this increase depends on the size of the
uncertainty relative to the expected effect size. Encouragingly, our sample of 500 plots
detected a significant increase in the proportion of avoided species, even though the size of
this effect was small (+1.24%). Likewise, differences of < 0.6% are detectable for the
preferred group. Given the turnover in compositional data from the RECCE (Figure 2), it is
reassuring that measures which aggregate across palatability groups can detect such small
differences, underscoring the value of a large plot network (with > 500 plots), and the
advantages of measures which are based on many species. Based on our estimates of species
turnover, we suggest that measures based on few plots, few species, a specific species,
species-turnover or on total richness are likely to be unreliable. Our framework could be
applied to other biodiversity measures, but further data would be needed, both from non-
forest situations and from a wider sample of forest situations, and for other data sources used
(e.g. pellet counts) to estimate ecological integrity.
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6 Recommendations

1. We recommend incorporating measurement uncertainty into monitoring and
reporting of biodiversity measures across Public Conservation Lands.

2. In order to incorporate measurement uncertainty into monitoring and reporting of
biodiversity measures across all Public Conservation Lands, estimates of
measurement uncertainty are required from a larger sample of forest ecosystems and
from non-forest ecosystems. We recommend quantifying measurement uncertainty
in a random sample of 15 Tier One forest plots and 15 Tier One non-forest and
shrubland plots to provide a nationally-robust sample of biodiversity uncertainty.

3. We have demonstrated that measures vary widely in their measurement uncertainty.
We recommend extending this work to assess the uncertainty in all measures used to
report on ecological integrity. A logical starting point would be the measures that are
used to report on the composite index of indigenous dominance, namely, pest animal
pellet counts, possum trap catch index, bird count data, and cover and richness of
exotic plant species.

4. We recommend that indices of species turnover and measures based on raw species
richness be avoided in Monitoring and Reporting programmes, due to the effect of
(unavoidable) measurement error.

5. We recommend using the RECCE data to determine the consequences of
measurement error on classification robustness using the Wiser et al. (2011)
classification.

6. We recommend applying the uncertainty framework to existing data from
experimental settings (e.g. exclosure studies) to test whether reported effects are
statistically robust once measurement uncertainty is accounted for.

7. We recommend quantifying detection probabilities for a representative suite of the
indicator species proposed by Monks et al. (2013) across a range of growth forms,
assumed abundance and habitats, and developing a framework for reporting on those
species with uncertainty (specifically false absences).

8. Measurement error is an unavoidable component of biodiversity data. We
recommend a two-stage solution that first minimises error through comprehensive
training programmes, and second, accommodates remaining error through
quantification and integration of measurement error into reported measures.
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